BIOL 650 - Environmental Analysis and Modeling Part II - Dynamic Modeling

- I. Parable of the Elephant. What is a model?
- II. Quantities or qualitites of interest in an ecological model:
 - A. Environmental variables (temp, light, chemical concentrations...)
 - B. Physiological variables (body temp, oxygen consumption, enzyme activity,...)
- C. Population variables (# of individuals, biomass of individuals, birth rate, feeding rate...)
 - D. Community variables (diversity, biomass by guild...)
 - E. Ecosystem variables (energy flow, elemental cycling...)
- III. Types of models
 - A. Word (verbal) models
 - B. Diagramatic models
 - C. Physical models
 - D. Mathematical models
- IV. Uses of models
 - A. General: synthesis, analysis, instrumentation
 - B. Science: understanding, prediction, control
 - C. Conceptual framework for organizing research, mechanism to summarize large quantities of data and identify areas of ignorance, all "what-if" scenarios by managers.
- V. Types of Mathematical Models
 - A. Empirical vs. Mechanistic
 - B. Static vs. Dynamic
 - C. Spatially heterogeneous vs. Spatially homogeneous
 - D. Stochastic vs. Deterministic
 - E. Example: the leaky bucket
- VI. Constraints on Model Structure
 - A. Realism vs. Precision vs. Generality
 - B. Data quality and degree of mechanistic understanding
- VII. The Modeling Process
 - A. Classical View (single working hypothesis, sequentially modified)
 - B. Multiple working hypothesis
- VIII. Qualitative Model Formulation
 - A. Forrester diagrams
 - 1. Objects/state variables compartments (boxes)
 - 2. Material flows (solid lines with bow ties and arrows)
 - 3. Information flows (dotted lines with arrows)
 - 4. Sources and sinks (clouds)
 - 5. Parameters (small circles with line through it)
 - 6. Auxillary variables (larger circle)
 - 7. Driving variables/forcing function (diamond)
 - B. Some examples: herbivore system, population growth
 - C. Multiple state variables

- D. Multiple flow variables
- E. Errors & uses of Forester diagrams
- F. Steps in qualitative model formulation
 - 1. Identify state variables (those whose levels you want and others that need to vary dynamically, i.e. through time)
 - 2. Identify flows among the state variables
 - 3. Identify controls on the flow rates
 - 4. Identify auxilliary and driving variables
- G. Model simplification
 - 1. Occam's razor
 - 2. Eliminate state variables
 - 3. Make stronger assumptions
 - 4. Remove temporal complexity
 - 5. Remove spatial complexity

IX. Quantitative Model Formulation

- A. State variables, inputs, outputs
- B. Finite difference equations vs. differential equations
- C. Translating Forester diagrams
- D. Dynamic relative rates
 - 1. Per capita rates
 - 2. Donor vs. Recipient control
 - 3. Feedback: positive vs. negative
 - 4. Self-inhibition
 - 5. Extrinsic
 - 6. Saturation
- E. Mass Action
- F. Conservation of mass and energy
- G. Multiple controlling factors
 - 1. Secondary influence vs. Multiple primary factors
 - 2. Liebig's law model
 - 3. multiplicative model
 - 4. arithmetic average model
 - 5. harmonic mean model
 - 6. additive rates model
- H. Discontinuous functions
- I. Driving variables
- J. Useful functions
- K. Summary of quanititative model formulation

X. Numerical Techniques

- A. Differential vs. Difference equations
- B. Analytical vs. Numerical solution of differential equations
- C. Euler method
- D. Runge-Kutta (2nd order="Improved Euler")
- E. Parameter estimation
 - 1. Direct linear regression
 - 2. Tranformed linear regression
 - 3. Polynomial regression
 - 4. Multiple linear regression
 - 5. Nonlinear regression

XI. Model Validation

- A. Definition
- B. Criteria
- C. Difficulties
- D. Geometry of validation
- E. Conditions for validation
- F. Unreplicated vs. replicated systems
- G. Model discrimination
- H. Sensitivity analysis

XII. Models of Growth

- A. Homogeneous populations
 - 1. Unlimited environment
 - 2. Limited environment
 - -logistic
 - -Monod
 - 3. Effect of temperature on growth
 - 4. Growth and light
- B. Age-specific population models
 - 1. Mortality patterns
 - 2. Fecundity patterns
 - 3. Life tables
 - 4. Leslie matrix
 - 5. Limited environment
 - 6. Fisheries models

XIII. Models of Environmental Factors

- A. Light
 - 1. Annual cycle
 - 2. Daily cycle
 - 3. Effects of cloud cover and backscatter
 - 4. Reflection
 - 5. Absorption of light in a water column
- B. Temperature
 - 1. Annual cycle
 - 2. Heat budgets/balance
 - a. Lake
 - b. Camel
 - c. Lake stratification
- C. Oxygen
 - 1. Sources and sinks
 - 2. Dissolved oxygen modeling
- XIV. Compartment Models and the Flow of Materials
 - A. Material cycling and energy flow
 - B. Nitrogen vs. Phosphorus
 - C. Phosphorus in a lake
 - D. Global carbon cycling
 - E. Energy flow
 - F. Silver Springs Model