BIOL 645 - Freshwater Ecology Lecture Outline

I. Ecology and evolution

- A. Ecology
- B. Evolution
- C. Natural Selection
- D. Proximate vs. Ultimate factors
- II. Methods of Ecological Research
 - A. Approaches
 - 1. Description/individual observations
 - 2. Classification
 - 3. Cause-effect relationships
 - 4. Prediction (Deduction/Induction)
 - B. Observations
 - C. Correlation using field data
 - D. Laboratory and Field Experimentation
 - E. Simulation & mathematical models
- III. The Aquatic Environment
 - A. Properties of Water and their Implications
 - 1. Molecular structure
 - 2. Density vs. Temperature
 - 3. High specific heat
 - 4. Surface tension
 - 5. Viscosity (laminar vs. turbulent flow)
 - 6. Water as a solvent (dissolved gasses, carbonate/bicarbonate, ions/polar molec)
 - **B.** Vertical Gradients
 - 1. Solar radiation
 - 2. Temperature & mixing
 - 3. Oxygen
 - 4. pH
 - 5. Redox
 - C. Running Water
 - 1. Flow
 - 2. Network position
 - 3. Physical structure
 - 4. Temperature
 - 5. Oxygen
 - D. Predictability
- IV. The Individual
 - A. Requirements of the Individual
 - 1. Ranges of tolerance
 - 2. The Niche
 - 3. Variations in the Niche
 - B. Abiotic Factors
 - 1. Temperature

- 2. Oxygen
- 3. pH
- 4. Ions
- 5. Water flow
- 6. Buoyancy
- 7. Surface tension
- C. Resources
 - 1. Energy, carbon, and electrons
 - 2. Resource consumption ("Functional Response")
 - 3. Regulation of Growth and Abundance by Resources ("Numerical Response")
 - 4. Nonsubstitutable an Substitutable Resources
 - 5. Light
 - 6. Inorganic carbon
 - 7. Mineral nutrients
 - 8. Inorganic sources of energy
 - 9. Anaerobic respiration
 - 10. Dissolved organic substances
 - 11. Particulate organic carbon
- D. Energy Utilization
 - 1. Net vs. Gross production
 - 2. Energetics of photosynthesis
 - 3. Heterotrophic energetics
 - 4. Animals
 - 5. Importance of Body Size
- V. Populations
 - A. Features of a population
 - B. Control of population size
 - 1. Fluctuations in abundance
 - 2. Mechanisms of change in abundance
 - 3. Growth rate of a population
 - 4. Logistic growth
 - 5. Estimating population dynamics parameters
 - C. Phenotypic and genotypic variability
 - 1. Selection
 - 2. Genetic structure
 - 3. Founder effects
 - D. Demography
 - 1. Age-specific mortality
 - 2. Age-specific fecundity
 - 3. Pop'n growth in an age-distributed population
 - 4. Stable age distribution
 - E. Distribution
 - F. r and K strategies
 - G. Distribution and colonization
- VI. Interactions
 - A. Competition

- 1. Competitive exclusion principle/niche
- 2. Lotka-Volterra competition model
- 3. Tilman's resource-based model
- 4. Competition under variable conditions
- (Skip pp 178-186)
- B. Predation
 - 1. Models of predation
 - 2. Prey defense mechanisms
 - 3. Grazing in the plankton
 - A. Filtration rate
 - B. Feeding selectivity
 - C. Nutrient regeneration
 - 4. Grazing and periphyton
 - 5. Foraging
 - A. Selectivity
 - B. Vertebrate predators
 - a. Planktivorous fish
 - b. Benthic
 - c. Trade-offs
 - C. Invertebrate predators
 - D. Prey defenses
 - 6. Parasitism
 - 7. Interaction of Predation and Competition

First Exam material ends here. (p. 235)

VII. Evolution of Life Histories