Environmental Analysis and Modeling BIOL 650 R. C. Jones

I. Nature of Environmental Analysis

A. Types of Analysis

- 1. Empirical vs. Theoretical
- 2. Physiological
- 3. Population
- 4. Community
- 5. Ecosystem
- B. Objectives of Analysis
 - 1. Description
 - 2. Generalization
 - 3. Hypothesis testing
- C. Basic Concepts
 - 1. Variation
 - 2. Surveys vs. Experiments
 - 3. Population (universe) vs. Sample
 - 4. Stratified vs. Completely Randomized Designs
 - 5. Univariate vs. Multivariate
 - 6. Graphical vs. Numerical
 - 7. Scale
 - 8. Replication
- D. Study Designs (Green 1979)

II. Graphical Analysis of Environmental Data

- A. Uses of Graphing
 - 1. Exploratory Data Analysis
 - 2. Presentation of Data
 - B. Criteria for Good Graphs
 - 1. Ellison (1993) in Scheiner and Gurevitch [on reserve]
 - 2. Cleveland (1985) cited in Ellison
 - C. Data Types and their Graphs
 - 1. Univariate data one sample "Looking at distributions"
 - a. One-dimensional scatterplots
 - b. Histograms
 - c. Stem and Leaf Plots
 - d. Quantile Plots
 - e. Box and Whisker Plots
 - 2. Univariate data multiple samples/categories
 - a. Bar graphs
 - b. Multiple one-dimensional representations arranged side-by-side -scatterplots
 - -back-to-back stem and leaf
 - -multiple box plots: time series, treatment comparisons
 - 3. Univariate data classified by 2 variables (Fig. 2.12, Ellison)

- a. Grouped bar graphs (with or without error bars)
- b. Stacked bar graph or pie chart
- c. Grouped mean and error bar graphs
- d. Grouped box plots
- 4. Bivariate data
 - a. Scatterplot
 - b. Influence plot
 - c. Convex hulls
 - d. Vertical strips
 - e. Smoothing
 - f. Jittering, sunflowers, cellulation, and sharpening
- 5. Multivariate data Three dimensions
 - a. Three-dimensional scatterplots using perspective
 - b. Multiple 2-D views -Draftsman's Display
 - c. Multiple 2-D views Pasted on a cube
 - d. Cube cut at a common vertex
 - e. Symbolic variation
- 6. Multivariate data Four or more dimensions
 - a. Draftsman's Display
 - b. Multple code symbols = Glyphs
- III. Overview of Multivariate Data
 - A. Definition: Each entity (e.g. sample) is represented by multiple attributes (e.g. species)
 - B. Example: Thorp et al. SAV macroinvertebrate data
 - C. Approaches to using multivariate data
 - 1. Graphical
 - 2. Indices: extraction of a single value for each entity (conversion of multivariate to univariate)
 - 3. Pairwise comparisons among entities (similarity/distance measures)
 - 4. Multivariate analysis: classification and ordination
- IV. Indices Condensing Multivariate Data into Univariate
 - A. Diversity
 - 1. Richness
 - 2. Simpson's Index
 - 3. Shannon's Index
 - B. Other simple indices
 - 1. Value of dominant species (attributes)
 - 2. Weighted composite of selected species (attributes)
 - C. Composite Indices
 - 1. Rapid Bioassessment Index for macroinvertebrate
 - -composed of several distinct subindices or "metrics"

-e.g. taxa richness, tolerance index, % dominance

-each index is calculated separately on each sample

-each is standardized as a percentage of reference value and scored according to its own distribution relative to the desired condition

-then they are summed to create a composite index of macroinvertebrate community condition

-thus you have a single number (RBP index) arising from a multivariate observation (community composition)

-similar to "Index of Leading Economic Indicators"

- V. Pairwise Comparisons: Similarity/Dissimilarity Measures
 - A. Quantitative Data
 - 1. Metric vs. non-metric: triangle inequality
 - 2. Euclidean Distance and related measures
 - 3. Absolute Distance (aka city block, Manhattan, taxicab) and related measures
 - 4. Percentage Similarity (Bray-Curtis Distance) and related measures
 - 5. Relativizing and Normalized Distances
 - 6. Relativized Euclidean and Absolute Distance
 - 7. Chord and geodesic distance
 - B. Binary Data
 - 1. Advantages and disadvantages
 - 2. Percentage similarity
 - 3. Ochiai
 - 4. Dice
 - 5. Jaccard
- V. Cluster Analysis Using Multivariate Data to Create a Hierarchical Classification A. Overview
 - 1. Choose a Similarity/Dissimilarity/Distance Measure
 - 2. Choose a Clustering/Linkage Algorithm
 - B. Similarity/Dissimilarity/Distance Measures (see IV.C. above)
 - C. Clustering Algorithms
 - 1. Methods using original distance matrix
 - a. Nearest neighbor (Single linkage) clustering
 - b. Farthest neighbor (Complete linkage) clustering
 - 2. Methods requiring recalculation of distance after each linkage
 - a. Centroid likage ("unweighted" and "weighted")
 - b. Average distance linkage ("unweighted" and "weighted")
 - c. Minimum variance clustering
 - D. Pros and Cons of each approach
 - E. Papers using Cluster Analysis
 - Ross, S.T. 1977. Patterns of resource partioning in sea robins (Pisces: Triglidae). *Copeia* 3: 561-571.
 - Jones, R.C., J. Cairns, Jr., and W.H. Yongue. 1976. Vertical gradients in artificial substrate-associated protozoan community structure in a stratified freshwater lake. *Journal of the Elisha Mitchell Scientific Society* 92: 1-8.
 - Thorp, A.G., R.C. Jones, and D.P. Kelso. 1997. A comparison of water-column macroinvertebrate communities in beds of differing submersed aquatic vegetation in the tidal freshwater Potomac River. *Estuaries* 20: 86-95.